Table-Driven Top-Down
Parsing

Prof. James L. Frankel
Harvard University

Version of 5:43 PM 3-Oct-2023
Copyright © 2023, 2022, 2018, 2015 James L. Frankel. All rights reserved.

LL(1) Grammars

* Predictive parsers, or recursive descent parsers, which need no
backtracking can be constructed from LL(1) grammars

* First “L” means that input is scanned from left to right
* Second “L” means that a leftmost derivation is applied
* The “1” means that one symbol of lookahead is possibly required

FIRST Function

e FIRST(a) is the set of terminals that begin strings derived from a,
where a is any string of grammar symbols

e Ifa=>" g, then gis also in FIRST(a)

FOLLOW Function

* FOLLOW(A), for non-terminal A, is the set of terminals a that can
appear immediately to the right of A in some sentential form

e That is, the set of terminals a such that
S =" aAa for some a and B
* Symbols between A and a can exist so long as they derived € and disappeared

* If A can be the rightmost symbol in some sentential form, then Sis in
FOLLOW(A)

* Sis a special endmarker symbol that is not a symbol of any grammar

Algorithm for FIRST Function

e Compute FIRST(X) for all grammar symbols X
* Apply these rules until no more terminals or € can be added to FIRST(X)

e 1. If Xis a terminal, then FIRST(X) ={ X }

* 2. If Xis a non-terminal and X - Y.,Y, ... Y, is a production for some k 2 1,
then place a in FIRST(X) if for some |, a is |n FIRST(Y) and € is in all of
FIRST(Y), .., FIRST(Y.,); thatis, ¥, ... Y., =" €. Ifgisin FIRST(Y) for aIIj 1,

, Kk, then add € to FIRST(X) For example everything in FIRST(Y) is
surely in FIRST(X). If Y, does not derive g, then we add nothing more to
FIRST(X), but if Y, =" €, then we add FIRST(Y), and so on.

e 3. If X = €is a production, then add € to FIRST(X)

Algorithm for FOLLOW Function

 Compute FOLLOW(A) for all non-terminals A
* Apply these rules until nothing can be added to FOLLOW(A)

* 1. Place S in FOLLOW(S), where S is the start symbol

e 2. If there is a production A - aBp, then everything in FIRST(B) except
€ is in FOLLOW(B)

* 3. If there is a production A = aB, or a production A - aBf, where
FIRST(B) contains €, then everything in FOLLOW(A) is in FOLLOW(B)

Construct Predictive Parsing Table M

Algorithm 4.31 on pp. 224-225

Rows are labelled with non-terminals
Columns are labelled with terminal symbols

Deal with each production separately, including those A-productions with a
common A head that have been combined and rewrittenasA > a, | a, | ... | o

For each production A - a of the grammar, do the following:

1. For each terminal a in FIRST(a), add A - a to M[A, a]

2. If eisin FIRST(a), then for each terminal b in FOLLOW&A), add A - a to M[A, b].
If £ isin FIRST(a) and S is in FOLLOW(A), add A = a to M[A, S] as well

Table-Driven Predictive Parsing Algorithm

e Algorithm 4.34 on pp. 226-228

* Inputis string w and parsing table M for grammar G; Output is a leftmost derivation of w or an
error indication

* The input buffer is initialized with wS; the stack is initialized with the start symbol S on top of
stack, above S; a denotes the current input symbol

* set ip to point to the first symbol of w;
set X to the top stack symbol;
while (X #S) {/* stack is not empty */
if (X1s a) pop the stack and advance ip;
else if (X'is a terminal) error();
else if (M[X, a] is an error entry) error();
elseif (M[X,al=X->Y,Y,..Y) {
output the production X Y,Y, .. Y,
pop the stack;
push Y, Y, .., Y; onto the stack, with Y, on top;

}set X to the top stack symbol;

Example of Table-Driven Parser

 Start with grammar:
TE'
+

FT'| €
F->(E)]|id
 Terminals are +, *, (,), and id

. G%Iovls/lr construction of FIRST and FOLLOW sets and the predictive parsing
table

* Execute the table-driven predictive parsing algorithm on input
(id+id) *id+id S

* Apply the actions in the order generated by the predictive parsing
algorithm to build the parse tree

Computing the FIRST Sets

e« FIRST(+)={+}
e FIRST(*)={*)

* FIRST(()={(}

* FIRST())={)}

e FIRST(id) ={id}

* FIRST(F)={{(,id}

« FIRST(T')={* &}

e FIRST(T)=FIRST(F)={(,id}

e FIRST(E')={+, ¢}

e FIRST(E) =FIRST(T)=FIRST(F)={(, id}

Computing the FOLLOW Sets

* FOLLOW(E) ={$}UFIRST())={S$,)}
« FOLLOW(E') = FOLLOW(E)={S,)}

« FOLLOW(T) =FIRST(E') ... =
{+,€}—{e}UFOLLOW(E') UFOLLOW(E) =
{+,e}-{elU{sS,)}={+)5S]}

« FOLLOW(T') = FOLLOW(T)={+),$}

* FOLLOW(F)=FIRST(T') ... =
{* e}—{e}UFOLLOW(T')UFOLLOW(T) =
{*,e}-{elU{+)S}={+%)S]}

Parsing Table M

a5 e e s

Input Terminals
T

c ESTE E->TE

- B S 4TE E'> ¢ E'> ¢

. - T>FT

. 'S T S *ET T >¢ T >e¢
F->(E)

F F-id

12

Predictive Parser Moves for
(id+id)*id+idS (1 of 3)
mmmm

(id+id)*id+idS

TE' S (id+id)*id+idS E->TE'
FTE'S (id+id)*id+id$ T->FT
(E)T'E'S (id+id)*id+idS F-> (E)
(E)T'E'S id+id)*id+idS Match (
TE')T'E'S id+id)*id+idS E > TE'
FT'E')T'E'S id+id)*id+idS TS FT
idT'E')T'E'S id+id)*id+idS F - id
(id TE)TES +id)*id+idS Match id
E')T'E'S +id)*id+idS T' > ¢

+TE)TE'S +id)*id+id$ E' > +TE

13

Predictive Parser Moves for
(id+id)*id+idS (2 of 3)
| Matched | Stak | Input | Action

+TE')T'E'S +id)*id+idS E'> +TE’ [line above]
(id+ TE')T'E'S id)*id+idS Match +
T E T E G id)*id+id$S T>FT
idT'E'")T'E'S id)*id+idS F > id
(id+id TE)TES)*id+idS Match id
E')T'E'S J¥id+idS T' > ¢
)JT'E'S)*id+idS E' > €
(id+id) TE'S *id+idS Match)
*FT'E'S *id+id$ T' > *FT
(id+id)* FT'E'S id+idS Match *

idT'E'S id+idS F - id

14

Predictive Parser Moves for

(id+id)*id+idS

(3 of 3)

idT'E'S

(id+id)*id TES
E'S

+TE'S

(id+id)*id+ TE'S
FT'E'S

idT'E'S

(id+id)*id+id TE'S
E'S

S

id+idS
+id$S
+id$S
+idS

F->id [line above]
Match id
T >e¢
E'>+TE
Match +
T>FT
F-id
Match id
T >¢
E'>¢€
DONE

15

Resulting Parse Tree

"(id+id) *id+id"

E o

	Slide 1: Table-Driven Top-Down Parsing
	Slide 2: LL(1) Grammars
	Slide 3: FIRST Function
	Slide 4: FOLLOW Function
	Slide 5: Algorithm for FIRST Function
	Slide 6: Algorithm for FOLLOW Function
	Slide 7: Construct Predictive Parsing Table M
	Slide 8: Table-Driven Predictive Parsing Algorithm
	Slide 9: Example of Table-Driven Parser
	Slide 10: Computing the FIRST Sets
	Slide 11: Computing the FOLLOW Sets
	Slide 12: Parsing Table M
	Slide 13: Predictive Parser Moves for (id+id)*id+id$ (1 of 3)
	Slide 14: Predictive Parser Moves for (id+id)*id+id$ (2 of 3)
	Slide 15: Predictive Parser Moves for (id+id)*id+id$ (3 of 3)
	Slide 16: Resulting Parse Tree

