
Table-Driven Top-Down
Parsing

Prof. James L. Frankel
Harvard University

Version of 5:43 PM 3-Oct-2023
Copyright © 2023, 2022, 2018, 2015 James L. Frankel. All rights reserved.

LL(1) Grammars

• Predictive parsers, or recursive descent parsers, which need no
backtracking can be constructed from LL(1) grammars

• First “L” means that input is scanned from left to right

• Second “L” means that a leftmost derivation is applied

• The “1” means that one symbol of lookahead is possibly required

2

FIRST Function

• FIRST(α) is the set of terminals that begin strings derived from α,
where α is any string of grammar symbols

• If α ⇒* ε, then ε is also in FIRST(α)

3

FOLLOW Function

• FOLLOW(A), for non-terminal A, is the set of terminals a that can
appear immediately to the right of A in some sentential form

• That is, the set of terminals a such that
 S ⇒* αAaβ for some α and β
• Symbols between A and a can exist so long as they derived ε and disappeared

• If A can be the rightmost symbol in some sentential form, then $ is in
FOLLOW(A)

• $ is a special endmarker symbol that is not a symbol of any grammar

4

Algorithm for FIRST Function

• Compute FIRST(X) for all grammar symbols X

• Apply these rules until no more terminals or ε can be added to FIRST(X)

• 1. If X is a terminal, then FIRST(X) = { X }

• 2. If X is a non-terminal and X → Y1Y2 … Yk is a production for some k ≥ 1,
then place a in FIRST(X) if for some i, a is in FIRST(Yi), and ε is in all of
FIRST(Y1), …, FIRST(Yi-1); that is, Y1 … Yi-1 ⇒* ε. If ε is in FIRST(Yj) for all j = 1,
2, …, k, then add ε to FIRST(X). For example, everything in FIRST(Y1) is
surely in FIRST(X). If Y1 does not derive ε, then we add nothing more to
FIRST(X), but if Y1 ⇒* ε, then we add FIRST(Y2), and so on.

• 3. If X → ε is a production, then add ε to FIRST(X)

5

Algorithm for FOLLOW Function

• Compute FOLLOW(A) for all non-terminals A

• Apply these rules until nothing can be added to FOLLOW(A)

• 1. Place $ in FOLLOW(S), where S is the start symbol

• 2. If there is a production A → αBβ, then everything in FIRST(β) except
ε is in FOLLOW(B)

• 3. If there is a production A → αB, or a production A → αBβ, where
FIRST(β) contains ε, then everything in FOLLOW(A) is in FOLLOW(B)

6

Construct Predictive Parsing Table M

• Algorithm 4.31 on pp. 224-225

• Rows are labelled with non-terminals

• Columns are labelled with terminal symbols

• Deal with each production separately, including those A-productions with a
common A head that have been combined and rewritten as A → α1 | α2 | … | αk

• For each production A → α of the grammar, do the following:

• 1. For each terminal a in FIRST(α), add A → α to M[A, a]

• 2. If ε is in FIRST(α), then for each terminal b in FOLLOW(A), add A → α to M[A, b].
If ε is in FIRST(α) and $ is in FOLLOW(A), add A → α to M[A, $] as well

7

Table-Driven Predictive Parsing Algorithm

• Algorithm 4.34 on pp. 226-228

• Input is string w and parsing table M for grammar G; Output is a leftmost derivation of w or an
error indication

• The input buffer is initialized with w$; the stack is initialized with the start symbol S on top of
stack, above $; a denotes the current input symbol

• set ip to point to the first symbol of w;
set X to the top stack symbol;
while (X ≠ $) { /* stack is not empty */
 if (X is a) pop the stack and advance ip;
 else if (X is a terminal) error();
 else if (M[X, a] is an error entry) error();
 else if (M[X, a] = X → Y1Y2 … Yk) {
 output the production X → Y1Y2 … Yk;
 pop the stack;
 push Yk, Yk-1, …, Y1 onto the stack, with Y1 on top;
 }
 set X to the top stack symbol;
}

8

Example of Table-Driven Parser

• Start with grammar:
E → T E'
E' → + T E' | ε
T → F T'
T' → * F T'| ε
F → (E) | id

• Terminals are +, *, (,), and id
• Go over construction of FIRST and FOLLOW sets and the predictive parsing

table M
• Execute the table-driven predictive parsing algorithm on input

(id + id) * id + id $
• Apply the actions in the order generated by the predictive parsing

algorithm to build the parse tree

9

Computing the FIRST Sets

• FIRST(+) = { + }
• FIRST(*) = { * }
• FIRST(() = { (}
• FIRST()) = {) }
• FIRST(id) = { id }
• FIRST(F) = { (, id }
• FIRST(T') = { *, ε }
• FIRST(T) = FIRST(F) = { (, id }
• FIRST(E') = { +, ε }
• FIRST(E) = FIRST(T) = FIRST(F) = { (, id }

10

Computing the FOLLOW Sets

• FOLLOW(E) = { $ } ꓴ FIRST()) = { $,) }

• FOLLOW(E') = FOLLOW(E) = { $,) }

• FOLLOW(T) = FIRST(E') … =
 { +, ε } – { ε } ꓴ FOLLOW(E') ꓴ FOLLOW(E) =
 { +, ε } – { ε } ꓴ { $,) } = { +,), $ }

• FOLLOW(T') = FOLLOW(T) = { +,), $ }

• FOLLOW(F) = FIRST(T') … =
 { *, ε } – { ε } ꓴ FOLLOW(T') ꓴ FOLLOW(T) =
 { *, ε } – { ε } ꓴ { +,), $ } = { +, *,), $ }

11

Parsing Table M

Non-
Terminals

Input Terminals

id + * () $

E E → T E' E → T E'

E' E' → + T E' E' → ε E' → ε

T T → F T' T → F T'

T' T' → ε T' → * F T' T' → ε T' → ε

F F → id F → (E)

12

Predictive Parser Moves for
(id+id)*id+id$ (1 of 3)

Matched Stack Input Action

E $ (id+id)*id+id$

T E' $ (id+id)*id+id$ E → T E'

F T' E' $ (id+id)*id+id$ T → F T'

(E) T' E' $ (id+id)*id+id$ F → (E)

(E) T' E' $ id+id)*id+id$ Match (

T E') T' E' $ id+id)*id+id$ E → T E'

F T' E') T' E' $ id+id)*id+id$ T → F T'

id T' E') T' E' $ id+id)*id+id$ F → id

(id T' E') T' E' $ +id)*id+id$ Match id

E') T' E' $ +id)*id+id$ T' → ε

+ T E') T' E' $ +id)*id+id$ E' → + T E'

13

Predictive Parser Moves for
(id+id)*id+id$ (2 of 3)

Matched Stack Input Action

+ T E') T' E' $ +id)*id+id$ E' → + T E‘ [line above]

(id+ T E') T' E' $ id)*id+id$ Match +

F T' E') T' E' $ id)*id+id$ T → F T'

id T' E') T' E' $ id)*id+id$ F → id

(id+id T' E') T' E' $)*id+id$ Match id

E') T' E' $)*id+id$ T' → ε

) T' E' $)*id+id$ E' → ε

(id+id) T' E' $ *id+id$ Match)

* F T' E' $ *id+id$ T' → * F T'

(id+id)* F T' E' $ id+id$ Match *

id T' E' $ id+id$ F → id

14

Predictive Parser Moves for
(id+id)*id+id$ (3 of 3)

Matched Stack Input Action

id T' E' $ id+id$ F → id [line above]

(id+id)*id T' E' $ +id$ Match id

E' $ +id$ T' → ε

+ T E' $ +id$ E' → + T E'

(id+id)*id+ T E' $ id$ Match +

F T' E' $ id$ T → F T'

id T' E' $ id$ F → id

(id+id)*id+id T' E' $ $ Match id

E' $ $ T' → ε

$ $ E' → ε

DONE

15

Resulting Parse Tree

"(id+id)*id+id"

E

E'T

F T'

(E)

T E'

T'F

id ε

+ T E'

F T'

id ε

ε

* F T'

id ε

+ T E'

εF T'

id ε

16

	Slide 1: Table-Driven Top-Down Parsing
	Slide 2: LL(1) Grammars
	Slide 3: FIRST Function
	Slide 4: FOLLOW Function
	Slide 5: Algorithm for FIRST Function
	Slide 6: Algorithm for FOLLOW Function
	Slide 7: Construct Predictive Parsing Table M
	Slide 8: Table-Driven Predictive Parsing Algorithm
	Slide 9: Example of Table-Driven Parser
	Slide 10: Computing the FIRST Sets
	Slide 11: Computing the FOLLOW Sets
	Slide 12: Parsing Table M
	Slide 13: Predictive Parser Moves for (id+id)*id+id$ (1 of 3)
	Slide 14: Predictive Parser Moves for (id+id)*id+id$ (2 of 3)
	Slide 15: Predictive Parser Moves for (id+id)*id+id$ (3 of 3)
	Slide 16: Resulting Parse Tree

